## MODULE OVERVIEW CHART



| Module number and name | Lesson number and name | National curriculum links | Working scientifically links | Scientific enquiry type | Lesson summary |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3: What do we know about the life cycles of amphibians? | Explain the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations | Using a wide range of secondary sources of information | In this lesson children deepen their knowledge about the group of animals called amphibians. They find out about the life cycles of a variety of amphibians, identifying some common characteristics including the process of metamorphosis. |
|  | 4: What do we know about the life cycles of insects? | Explain the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations | Using a wide range of secondary sources of information | In this lesson children deepen their knowledge about the group of animals called insects. They find out about the life cycles of a variety of insects, identifying some common characteristics. |
|  | 5: What do we know about the life cycles of birds? | Explain the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations | Using a wide range of secondary sources of information | In this lesson children deepen their knowledge about the group of animals called birds. They find out about the life cycles of a variety of birds, identifying some common characteristics. |
|  | 6: What makes a successful life cycle? | Explain the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Identifying scientific evidence that has been used to support or refute ideas or arguments | Finding things out using secondary sources of information | In this lesson children apply their knowledge and understanding of animal life cycles to an unfamiliar context. They invent their own animal, describe in detail each stage of its life cycle and explain how this will ensure its long-term success. |
|  | 7: How are humans helping endangered animals to complete their life cycles? | Explain the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Identifying scientific evidence that has been used to support or refute ideas or arguments | Finding things out using secondary sources of information | In this lesson children find out about the ways in which humans are using science to help endangered animals complete their life cycles. |
|  | EL1: Why do animals make incredible journeys as part of their life cycles? | Explain the differences in the life cycles of a mammal, an amphibian, an insect and a bird | Identifying scientific evidence that has been used to support or refute ideas or arguments | Finding things out using a wide range of secondary sources of information | In this lesson children find out about the incredible journeys that are undertaken by different types of animals during their life cycles. |
| Year 5 <br> Module 2 <br> Reproduction in Plants and | 1: How do flowering plants reproduce? | Describe the life process of reproduction in some plants and animals | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree | Grouping and classifying | In this lesson children revise work about the part that flowers play in the life cycle of flowering plants. They learn about the role of the flower, its parts and their function, and the processes of pollination and |



| Module number and name | Lesson number and name | National curriculum links | Working scientifically links | Scientific enquiry type | Lesson summary |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8: How do boys become men? | Describe the changes as humans develop to old age | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations | Grouping and classifying | In this lesson children learn about the life cycle stage of puberty in boys. |
| Year 5 <br> Module 3 Get <br> Sorted | 1: How can we compare and group materials? | Compare and group together everyday materials based on evidence from comparative and fair tests, including hardness, solubility, transparency, conductivity (electrical and thermal) and response to magnets | Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, and bar and line graphs | Grouping and classifying | In this lesson children identify, compare and group materials based on their properties and according to their own or given criteria. |
|  | 2: Is a solid always hard? | Compare and group together everyday materials based on evidence from comparative and fair tests, including hardness, solubility, transparency, conductivity (electrical and thermal) and response to magnets | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results in oral and written forms such as displays and other presentations | Carrying out comparative and fair tests | In this lesson children investigate solids and compare them according to their properties. |
|  | 3: Is a liquid always runny? | Compare and group together everyday materials based on evidence from comparative and fair tests, including hardness, solubility, transparency, conductivity (electrical and thermal) and response to magnets | Planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary | Grouping and classifying | In this lesson children carry out various comparative tests, exploring the viscosity of liquids. |
|  | 4: Are all metals the same? | Compare and group together everyday materials based on evidence from comparative and fair tests, including hardness, solubility, transparency, conductivity (electrical and thermal) and response to magnets | Identifying scientific evidence that has been used to support or refute ideas | Grouping and classifying | In this lesson children explore the ways in which metals are used around their school and in the wider world, and link these uses to the properties of the metals. |
|  | 5: Are all plastics the | Compare and group together | Planning different types of | Grouping and | In this lesson children identify and investigate the wide- |





| Module number and name | Lesson number and name | National curriculum links | Working scientifically links | Scientific enquiry type | Lesson summary |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | and the action of acid on bicarbonate of soda |  |  |  |
|  | 3: How long does it take for iron nails to rust? | Explain that some changes result in the formation of new materials and that this kind of change is not usually reversible, including changes associated with burning and the action of acid on bicarbonate of soda | Planning different types of scientific enquiry to answer questions, including recognising and controlling variables where necessary | Observing over time | In this lesson children set up an investigation to observe the changes that take place when some metals are exposed to the air or water. |
|  | 4: What happens when a candle burns? | Explain that some changes result in the formation of new materials and that this kind of change is not usually reversible, including changes associated with burning and the action of acid on bicarbonate of soda | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations | Observing over time | In this lesson children observe and discuss the changes involved in burning a candle, recognising that there are reversible and non-reversible changes involved in the process. |
|  | 5: How long does it take for things to rust? | Explain that some changes result in the formation of new materials and that this kind of change is not usually reversible, including changes associated with burning and the action of acid on bicarbonate of soda | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations | Observing changes over different periods of time | In this lesson children collate the results of the observation enquiries begun a couple of weeks before in Lesson 3, draw conclusions and present them to their peers. |
|  | EL1: What would make the best rocket fuel? | Explain that some changes result in the formation of new materials, and that this kind of change is not usually reversible, including changes associated with burning and the action of acid on bicarbonate of soda | Planning different types of scientific enquiry to answer questions, including recognising and controlling variables where necessary | Comparative and fair tests | In this lesson children use knowledge gained from Lesson 2 to investigate a non-reversible change that takes place when an effervescent vitamin C tablet and water are combined. |
|  | EL2: <br> What are the bubbles in honeycomb toffee? | Explain that some changes result in the formation of new materials and that this kind of change is not usually reversible, including changes associated with burning and the action of acid on bicarbonate of soda | Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations | Observation over time | In this lesson children observe the process of making honeycomb toffee and identify the changes that happen to the materials used in the recipe. |
| Year 5 | 1: How can we | Identify the effects of air | Taking measurements, using a | Noticing patterns | In this lesson children extend their understanding of |


| Module number <br> and name | Lesson number <br> and name | National curriculum links | Working scientifically links | Scientific <br> enquiry type |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Module 7: Feel <br> the Force | measure forces? | resistance, water resistance <br> and friction, which act between <br> moving surfaces | range of scientific equipment, with <br> increasing accuracy and precision, <br> including taking repeat readings <br> when appropriate |  |
|  | 2: Why does an object <br> fall? | Explain that unsupported objects <br> fall towards the Earth because of <br> the force of gravity acting <br> between the Earth and the <br> falling object, and identify the <br> effects of air resistance, water <br> resistance and friction, which act <br> between moving surfaces | Identifying scientific evidence that <br> has been used to support or <br> refute ideas or arguments | Carrying out <br> comparative and fair <br> tests |
| Newton meter. |  |  |  |  |


| Module number <br> and name | Lesson number <br> and name | National curriculum links | Working scientifically links | Scientific <br> enquiry type |
| :--- | :--- | :--- | :--- | :--- |
|  |  | 8: How can we use <br> levers to help us? <br> therce of gravity acting <br> balling object Earth and the | Recognise that some <br> mechanisms, including levers, <br> pulleys and gears, allow a <br> keys, tables, scatter graphs, and bar <br> and line graphs | Taking measurements, using a range <br> of scientific equipment with increasing <br> accuracy and precision, including <br> taking repeat readings when <br> effect |
|  | 9ppropriate to have a greater | Carrying out <br> comparative simple <br> and fair tests |  |  |
| heavy load? |  |  |  |  |


| Module number and name | Lesson number and name | National curriculum links | Working scientifically links | Scientific enquiry type | Lesson summary |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | help us to measure time? | rotation to explain day and night and the apparent movement of the Sun across the sky | range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate | over different periods of time | clock. Children record the position and length of a shadow. |
|  | 5 : What time is it around the world? | Use the idea of the Earth's rotation to explain day and night and the apparent movement of the Sun across the sky | Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs | Finding things out using a wide range of secondary sources o information | In this lesson children use a globe and world maps to find out about world time zones and how time is linked to longitude. |
|  | 6: Why do we have seasons? | Describe the movement of the Earth, and other planets, relative to the Sun in the solar system | Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, and bar and line graphs | Observing change over time (modelled) | In this lesson children explore how Earth's tilt on its axis causes seasonal changes and changes in daylight hours. |
|  | 7: What are our conclusions about sunrise and sunset times? | Use the idea of the Earth's rotation to explain day and night and the apparent movement of the Sun across the sky | Identifying scientific evidence that has been used to support or refute ideas or arguments | Finding things out using a wide range of secondary sources of information | This lesson develops children's learning on time and seasons through investigating and explaining changes in the times of sunrise and sunset in different parts of the UK and different parts of the world. |
|  | 8: Why does the Moon change shape? | Describe the movement of the Moon relative to the Earth | Using test results to make predictions to set up further comparative and fair tests | Observing changes over different periods of time | In this lesson the children use their Moon diaries as a source of information to investigate how the Moon appears to change shape over a month. |

